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The global bifurcations and chaotic dynamics of a parametrically excited, simply
supported rectangular thin plate are analyzed. The formulas of the thin plate are derived by
von Karman-type equation and Galerkin's approach. The method of multiple scales is used
to obtain the averaged equations. Based on the averaged equations, theory of normal form is
used to give the explicit expressions of normal form associated with a double zero and a pair
of pure imaginary eigenvalues by Maple program. On the basis of the normal form, global
bifurcation analysis of the parametrically excited rectangular thin plate is given by a global
perturbation method developed by Kovacic and Wiggins. The chaotic motion of thin plate is
found by numerical simulation. ( 2001 Academic Press
1. INTRODUCTION

With the use of the thin plate in the large-space station and the cover skin for wings used in
the shutter and modern aircraft, non-linear dynamics, bifurcations and chaos of thin plates
are gaining more importance. For the studies on non-linear oscillations of thin plates in the
case of large deformation, the researchers in the engineering have given a wide attention. In
the past decade, the researchers have conducted a number of studies on non-linear
oscillations, bifurcations and chaos of thin plates and thin shallow arch structures. Holmes
[1] studied #ow-induced oscillations and bifurcations of thin plate and simpli"ed this
problem to two-degree-of-freedom (d.o.f.) non-linear system and used center manifolds,
theory of normal forms to study the degenerate bifurcations. Yang and Sethna [2] used the
averaging method to study the local and global bifurcations in parametrically excited nearly
square plate. From van Karman equation, they simpli"ed this system to a parametrically
excited two-d.o.f. non-linear oscillators with Z

2
= Z

2
-symmetry and analyzed the global

behavior of averaged equations. The results obtained in reference [2] indicated that the
heteroclinic loops exist and Smale horse and chaotic motions can occur. Based on the
studies in reference [2], Feng and Sethna [3] made use of a global perturbation method
developed by Kovacic and Wiggins [4] to study further the global bifurcations and chaotic
dynamics of thin plate under parametric excitation, and obtained the conditions in which
Silnikov-type homoclinic orbits and chaos can occur.

Hadian and Nayfeh [5] used the method of multiple scales to analyze asymmetric
responses of non-linear clamped circular plates subjected to harmonic excitations and
considered the case of a combination-type internal resonance. Pai and Nayfeh [6] presented
a general non-linear theory for the studies on dynamics of elastic composite plates
undergoing moderate-rotation oscillations by considering the geometric non-linearities.
Sassi and Ostiguy [7] investigated e!ects of initial geometric imperfections on the
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interaction between forced and parametric oscillations for simply supported rectangular
plates. Nayfeh and Vakakis [8] used the method of multiple scales to study the
subharmonic travelling waves of thin, axisymmetric, geometrically non-linear circular
plates and found the non-linear interactions of pairs of modes with coincident linearized
natural frequencies. Chang et al. [9] investigated the bifurcations and chaos of a rectangular
thin plate with 1 : 1 internal resonance. Tian et al. [10, 11] used the averaging method and
Melnikov technique to study local, global bifurcations and chaos of a two-d.o.f. shallow
arch subjected to simple harmonic excitation for cases of 1 : 2 and 1 : 1 internal resonance
respectively. Abe et al. [12] used the method of multiple scales to analyze two-mode
response of simply supported thin rectangular laminated plates subjected to a harmonic
excitation. Popov et al. [13] investigated the interaction between di!erent modes of shell
oscillations and bifurcations under parametric excitation by using system models with four
of the lowest modes. Malhotra and Namachchivaya [14, 15] investigated the global
bifurcations and chaotic dynamics of the shallow arch structures under 1 : 1 and 1 : 2
internal resonance conditions respectively.

This paper is focused on the studies for the global bifurcations and chaotic dynamics of
the simply supported at the four-edge rectangular thin plate subjected to in-plane
excitation. The case of 1 : 1 internal resonance and primary parametric resonance is
considered. First it is based on von Karman-type equation, the governing equations of the
rectangular thin plate are derived and the equations of motion with two-d.o.f. under
parametrical excitation can be obtained by using Galerkin's approach respectively. Then
the method of multiple scales can be used to "nd the averaged equations of the original
non-autonomous system. From the averaged equations, the theory of normal form is
applied to obtain the explicit formulas of normal form associated with a double zero and
a pair of pure imaginary eigenvalues with the aid of Maple program. A global perturbation
method developed by Kovacic and Wiggins [4] is utilized to give the analysis for the global
and chaotic dynamics of the rectangular thin plate. The global bifurcation analysis indicates
that there exist the heteroclinic bifurcations and the Silnikov-type homoclinic orbit in the
averaged equations. The results obtained in this paper also show that the chaotic motion
can occur in a parametrically excited rectangular thin plate. The numerical simulations
verify the analytical prediction.

2. FORMULATION

We consider the simply supported at the four-edge rectangular thin plate where the edge
lengths are a and b and thickness is h respectively. The thin plate is subjected to its plane
excitation. We establish a Cartesian co-ordinate system shown in Figure 1 such that
Figure 1. The model of a rectangular thin plate and the co-ordinate system.



CHAOTIC DYNAMICS OF THIN PLATE 1015
co-ordinate Oxy is located in the middle surface of the thin plate. It is assumed that u, v and
w represent the displacements of a point in the middle plane of the thin plate in the x, y and
z directions respectively. The excitation in-plane of the thin plate may be expressed in the
form p"p

0
!p

1
cosXt. From van Karman-type equations for the thin plate [16], we

obtain the equations of motion for the rectangular thin plate as follows:

D+ 4w#oh
L2w

Lt2
!

L2w

Lx2

L2/
Ly2

!

L2w

Ly2

L2/
Lx2

#2
L2w

LxLy

L2/
LxLy

#k
Lw

Lt
"0, (1)

+ 4/"EhCA
L2w

LxLyB
2
!

L2w

Lx2

L2w

Ly2D , (2)

where o is the density of thin plate, D"Eh3/12(1!l2) is the bending rigidity, E is Young's
modulus, l is the Possion ratio, / is the stress function, and k is the damping coe$cient.

We assume that the simply supported boundary conditions can be written as

at x"0 and a, w"

L2w

Lx2
"0; at y"0 and b, w"

L2w

Ly2
"0. (3)

The boundary conditions satis"ed by the stress function / may be expressed in following
form:

u"P
a

0
C
1

E A
L2/
Ly2

!l
L2/
Lx2B!

1

2 A
Lw

LxB
2

Ddx"d
x

and

h P
b

0

L2/

Ly2
dy"p at x"0 and a, (4)

v"P
b

0
C
1

E A
L2/

Lx2
!l

L2/
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1

2 A
Lw

LyB
2

Ddx"0

and

P
a

0

L2/

Lx2
dx"0 at y"0 and b, (5)

where d
x

is the corresponding displacement in the x direction at the boundary.
We mainly consider the non-linear oscillations of thin plate in the "rst two modes. Thus,

we write w in the form of

w (x, y, t)"u
1
(t) sin

nx

a
sin

3ny

b
#u

2
(t) sin

3nx

a
sin

ny

b
, (6)

where u
*
(t) (i"1, 2) are the amplitudes of two modes respectively.
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Substituting equation (6) into equation (2), considering the boundary conditions (4) and
(5) and integrating, we may obtain the stress function as follows:

/ (x, y, t)"/
20

(t) cos
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2nx

a
cos

4ny

b

#/
42

(t) cos
4nx

a
cos

2ny

b
#/

44
(t) cos

4nx

a
cos

4nx

b
!

1

2
py2, (7)

where
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a
. (8)

In order to obtain the dimensionless equations, we introduce the transformations of
variables and parameters
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where e is a small parameter. For simplicity, we drop overbars in the following analysis. By
means of Galerkin's method, substituting equations (6) and (7) into equation (1) and
integrating, we obtain the equations of motion for the dimensionless as follows:
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where

a
1
"
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1
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1
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a
2
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"
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1

and k"1, 2, (11)
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where u
k
(k"1, 2) are two linear natural frequencies of the thin plate, p*

k
(k"1, 2) are the

critical forces corresponding to two buckling modes at which thin plate loses the stability,
u*

k
(k"1, 2) are the natural frequencies of the two buckling modes, and f

k
(k"1, 2) are the

amplitudes of parametric excitation.

3. PERTURBATION ANALYSIS

The method of multiple scales [17] may be used to "nd the uniform solutions of
equations (10) in the following form:

x
n
(t, e)"x

n0
(¹

0
, ¹

1
)#ex

n1
(¹

0
, ¹

1
)#2, n"1, 2, (12)

where ¹
0
"t, ¹

1
"et. Then we have the di!erential operators

d
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"
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0
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0
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0
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D

1
#2, (14)

where D
k
"L/L¹

k
, k"0, 1.

We only study the case of primary parametric resonance and 1 : 1 internal resonance. In
this resonant case these are the following relations:

u2
1
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4
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1
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2
"1

4
X2#ep

2
, (15)

where p
1

and p
2

are the two detuning parameters. For convenience of the study, we let
X"2.

Substituting equations (12)} (14) into equations (10) and balancing the coe$cients of like
power of e on the left- and right-hand side of the equations, the di!erential equations are
obtained as follows:
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The solutions in the complex form of equations (16) and (17) can be found as

x
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1
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1
)e~*T0, (20)

where n"1, 2, and AM is the complex conjugate of A. Substituting equation (20) into
equations (18) and (19) yields
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where cc represents the parts of the complex conjugate of the function on the right-hand
side of equations (21) and (22), and NST represents the terms that do not produce secular
terms. Eliminating the terms that produce secular terms from equations (21) and (22) yields

D
1
A

1
"!1

2
kA

1
#1

2
ip

1
A

1
#1

2
i f

1
AM

1
#3

2
ia

1
A2

1
AM

1
#ia

2
A

1
A

2
AM

2
#1

2
ia

2
AM

1
A2

2
, (23)

D
1
A

2
"!1

2
kA

2
#1

2
ip

2
A

2
#1

2
i f

2
AM

2
#3

2
ib

1
A2

2
AM

2
#ib

2
A

1
AM

1
A

2
#1

2
ib

2
A2

1
AM

2
. (24)

The functions A
n

(n"1, 2) may be expressed in the polar form

A
n
"1

2
a
n
e*un and n"1, 2, (25)

where a
n
and u

n
are the real functions with respect to ¹

1
. Substituting equation (25) into

equations (23) and (24), the averaged equations in the polar form are obtained as follows:
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It is noted from equation (26) that the periodic solutions and local bifurcation of the thin
plate can be analyzed when

da
1

d¹
1

"

du
1

d¹
1

"
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2

d¹
1

"

du
2

d¹
1

"0.

4. NORMAL FORM OF AVERAGED EQUATIONS

In order to obtain the normal form of averaged equations and analyze the global
bifurcations, we need to transform the averaged equations from the polar form into
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Cartesian form. Let
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Then, equations (26) can be transformed into the following Cartesian form:
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We notice that the averaged equations (28) have the Z
2
=Z

2
and D

4
symmetries. It is

known that system (28) has a trivial zero solution (x
1
, x

2
, x

3
, x

4
)"(0, 0, 0, 0) at which the

Jacobi matrix can be written as
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The characteristic equation corresponding to the trivial zero solution is
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When k"0, D
1
"0 and D
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2
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2
'0 simultaneously, system (28) has one

non-semisimple double zero and a pair of pure imaginary eigenvalues
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where u2"p2
2
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2
. Considering the excitation amplitude f

2
as a parameter, and letting
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Based on the above analysis, a near-identity non-linear transformation can be introduced
as follows:
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Then, with the aid of Maple program [18], the normal form of equations (33) can be
obtained as follows:
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where a dot denotes the derivative with respect to ¹
1
. The normal form with parameters can

be written as
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2
!f

2
)y

4
!3

2
b
1
y
4
(y2

3
#y2

4
)!b

2
y2
1
y
4
,

(36)

yR
4
"(pN

2
#f

2
)y

3
!kN y

4
#3

2
b
1
y
3
(y2

3
#y2

4
)#b

2
y2
1
y
3
,
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where pN
2
"1

2
p
2
, fM

2
"1

2
f
2

and kN "1
2
k. Further, letting

y
3
"I cos c and y

4
"I sin c, (37)

and substituting equation (37) into normal form (36) can yield

yR
1
"!kN y

1
#(1!pN

1
)y

2
,

yR
2
"pN

1
y
1
!kN y

2
#3

2
a
1
y3
1
#a

2
y
1
I2,

IQ"!kN I#fM
2
I sin 2c,

(38)

IcR"pN
2
I#3

2
b
1
I3#b

2
Iy2

1
#fM

2
I cos 2c.

Introducing a linear transformation

C
y
1

y
2
D"C

1!pN
1

kN
0

1DC
u
1

u
2
D , (39)

yields

C
u
1

u
2
D"

1

1!pN
1
C

1

!kN
0

1!pN
1
DC

y
1

y
2
D . (40)

Substituting equations (39) and (40) into equations (38) and omitting the non-linear terms
with the parameter pN

1
yields the unfolding as

uR
1
"u

2
,

uR
2
"!k

1
u
1
!k

2
u
2
#a

2
I2u

1
#3

2
a
1
u3
1
,

IQ"!kN I#fM
2
I sin 2c,

(41)

IcR"pN
2
I#3

2
b
1
I3#b

2
Iu2

1
#fM

2
I cos 2c,

where k
1
"k6 2!p6

1
(1!p6

1
) and k

2
"2k6 .

The scale transformations may be introduced as follows:

k
2
Pek

2
, kN PekN , fM

2
Pe fM

2
, 3

2
a
1
Pa

1
, 3

2
b
1
Pb

1
. (42)

Then, normal form (41) can be rewritten as the form with the perturbation

uR
1
"

LH

Lu
2

#egu1"u
2
,

uR
2
"!

LH

Lu
1

#egu2"!k
1
u
1
#a

1
u3
1
#a

2
u
1
I2!ek

2
u
2
,

IQ"
LH

Lc
#egI"!ekN I#e fM

2
I sin 2c,

(43)

IcR"!

LH

LI
#egc"pN

2
I#b

1
I3#b

2
u2
1
I#e fM

2
I cos 2c,
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where the Hamiltonian function is of the form

H (u
1
, u

2
, I, c)"1

2
u2
2
#1

2
k
1
u2
1
!1

4
a
1
u4
1
!1

2
a
2
I2u2

1
!1

2
pN
2
I2!1

4
b
1
I4, (44)

and a
2
"b

2
, gu1"0, gu2"!k

2
u
2
, gI"!kI#fM

2
I sin 2c and gc"fM

2
I cos 2c.

It is noted that unfolding, equation (43) with the perturbation is similar to the equations
studied by Wiggins [19] as well as Kovicic and Wiggins [4]. But there are di!erences
between this paper and the papers [4, 19]. It is observed from the papers [4, 19] that the
researchers investigated the case in which the "rst two equations have a pair of pure
imaginary eigenvalues. In this paper, "rst, the autonomous system can be further simpli"ed
by the normal form. Then, it is considered that system (28) has one non-semisimple double
zero and a pair of pure imaginary eigenvalues. In references [3, 20] the researchers used
a series of non-linear transformations to obtain the standard form of equations. It is
observed that the normal form with perturbation is actually simpler than the standard form
of equations when we analyze the singular points, the stability of system, and calculate
Melnikov function. So it is easier and more convenient for one to use the theory of normal
form to simplify the equations to the standard form of equations and to analyze the
dynamics of the simpli"ed equations.

5. ANALYSIS OF GLOBAL BIFURCATIONS

5.1. DYNAMICS OF DECOUPLED SYSTEM

When e"0, it is noted that system (43) is a two uncoupled single-d.o.f. non-linear system.
The I variable appears in (u

1
, u

2
) components of system (43) as a parameter since IQ"0.

Consider the "rst two decoupled equations with perturbation term

uR
1
"u

2
, uR

2
"!k

1
u
1
#a

2
I2u

1
#a

1
u3
1
!ek

2
u
2
. (45)

Since a
1
'0, system (45) can exhibit the heteroclinic bifurcations. It is easy to see from

equations (45) that when k
1
!a

2
I2(0, the only solution of system (45) is the trivial zero

solution (u
1
, u

2
)"(0, 0) which is the saddle point. On the curve de"ned by k

1
"a

2
I2, that

is,

kN 2"pN
1
(1!pN

1
)#a

2
I2 (46)

or

I
1,2

"$C
kN 2!pN

1
(1!pN

1
)

a
2

D
1@2

, (47)

the trivial zero solution may bifurcate into three solutions through a pitchfork bifurcation,
which are given by q

0
"(0, 0) and q

$
(I)"(B, 0), respectively, where

B"$G
1

a
1

[kN 2!pN
1
(1!pN

1
)!a

2
I2]H

1@2
. (48)

From the Jacobian matrix evaluated at the non-zero solutions, it is known that the
singular points q

$
(I) are the saddle points. On the line k

2
"0, the Hopf bifurcation can
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occur from the trivial zero solution. The simple analysis for Hopf bifurcation shows that
when k

2
(0, the limit cycle is stable.

It is observed that I and c may represent actually the amplitude and phase of the
vibrations. Therefore, we may assume that I*0 and equation (47) becomes

I
1
"0 and I

2
"C

kN 2!pN
1
(1!pN

1
)

a
2

D
1@2

, (49)

such that for all I3[I
1
, I

2
], system (45) has two hyperbolic saddle points, q

$
(I), which are

connected by a pair of heteroclinic orbits, uh
$

(¹
1
, I ), that is, lim

T1?$=
uh
$

(¹
1
, I )"q

$
(I).

So in the full four-dimensional phase space the set de"ned by

M"M(u, I, c) Du"q
$

(I), I
1
)I)I

2
, 0)c)2nN (50)

is a two-dimensional invariant manifold. From the results obtained in references [4, 19, 20],
it is known that the two-dimensional invariant manifold M is normally hyperbolic. The
two-dimensional normally hyperbolic invariant manifold M has three-dimensional stable
and unstable manifolds which are represented as =s(M) and =u(M) respectively. The
existence of the heteroclinic orbit of system (45) to q

$
(I)"(B, 0) indicates that=s(M) and

=u(M) intersect non-transversally along a three-dimensional heteroclinic manifold denoted
by C [4], which can be written as

C"G(u, I, c) Du"uh
$

(¹
1
, I), I

1
(I(I

2
, c"P

T1

0

D
I
H(uh

$
(¹

1
, I), I) ds#c

0H . (51)

Now we analyze the dynamics of the unperturbed system of equations (43) restricted to
M. Considering the unperturbed system of equations (43) restricted to M yields

IQ"0, IcR"D
I
H (q

$
(I ), I), I

1
)I)I

2
, (52)

where

D
I
H (q

$
(I), I)"!

LH(q
$

(I ), I)

LI
"pN

2
I#b

1
I3#b

2
Iq2

$
(I ).

From Kovacic and Wiggins [4], it is known that if D
I
H(q

$
(I), I)O0 then I"constant

is called as a periodic orbit and if D
I
H(q

$
(I ), I)"0 then I"constant is called as a circle of

the singular points. A value of I3[I
1
, I

2
] at which D

I
H (q

$
(I), I)"0 is called as a resonant

I value and these singular points as resonant singular points. We denote a resonant value by
I
r
so that

D
I
H (q

$
(I ), I)"pN

2
I
r
#b

1
I3
r
#

b
2
I
r

a
1

[kN 2!pN
1
(1!pN

1
)!a

2
I2
r
]"0. (53)

Then, we obtain

I
r
"$G

a
1
pN
2
#b

2
[kN 2!pN

1
(1!pN

1
)]

a
2
b
2
!a

1
b
1

H
1@2

. (54)



Figure 2. The geometric structure of M,=s(M) and =u(M) in the full four-dimensional phase space.
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The geometry structure of the stable and unstable manifolds of M in the full
four-dimensional phase space for the unperturbed system of equations (43) is given in
Figure 2. Because c may represent the phase of the oscillations, when I"I

r
, the phase shift

Dc of the oscillations is de"ned as

Dc"c(#R, I
r
)!c(!R, I

r
). (55)

The physical interpretation of the phase shift is the phase di!erence between the two end
points of the orbit. In (u

1
, u

2
) subspace, there exist a pair of the heteroclinic orbits

connecting to the two saddles. Therefore, in fact the homoclinic orbit in (I, c) subspace is of
a heteroclinic connecting in full four-dimensional phase space (u

1
, u

2
, I, c). The phase shift

may denote the di!erence of c value as a trajectory leaves and returns to the basin of
attraction of M. We will use the phase shift in subsequent analysis to obtain the condition
for the existence of Silnikov-type homoclinic orbit. The phase shift will be calculated in the
later analysis given for the heteroclinic orbit.
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We consider the heteroclinic bifurcations of system (45). Letting e
1
"k

1
!a

2
I2 and

k
2
"e

2
, system (45) can be rewritten as

uR
1
"u

2
, uR

2
"!e

1
u
1
#a

1
u3
1
!ee

2
u
2
. (56)

Setting e"0 in equations (56) we see that system (56) is a Hamiltonian system with
Hamiltonian

H(u
1
, u

2
)"1

2
u2
2
#1

2
e
1
u2
1
!1

4
a
1
u4
1
. (57)

When H"e2
1
/4a

1
, there exists a heteroclinic loop C0 which consists of the two hyperbolic

saddles q
$

and a pair of heteroclinic orbits u
$

(¹
1
). The equations of pair of heteroclinic

orbits can be obtained as

u
1
(¹

1
)"$S

e
1a

1
tanh A

J2e
1

2
¹
1B

u
2
(¹

1
)"$

e
1

J2a
1

sech2 A
J2e

1
2

¹
1B .

(58)

The Melnikov function for heteroclinic orbits is easily given by

M(e
1
, e

2
, I)"P

=

~=

u
2
(¹

1
)[!e

2
u
2
(¹

1
)] d¹

1
"!

2J2e3@2
1

e
2

3a
1

. (59)

To keep the heteroclinic loop preserved under a perturbation, it is necessary to require that
M(e

1
, e

2
, I)"0. Therefore, equation (59) leads to e

2
"0 which corresponds to the singular

point, or e
1
"0. Choosing e

1
"0, then, a heteroclinic bifurcation curve can be obtained as

kN 2"pN
1
(1!pN

1
)#a

2
I2. (60)

It is found from equations (46) and (60) that the pitchfork bifurcation curve and the
heteroclinic bifurcation curve coincide. Based on equations (46) and (60), the bifurcation
diagram of system (45) is obtained in Figure 3, and the corresponding phase portraits are
given in Figure 4.

Let us turn our attention to the computation of the phase shift. Substituting the "rst
equation of equations (58) into the fourth equation of the unperturbed system of equations
(43) yields

cR"pN
2
#b

1
I2#

e
1
b
2

a
1

tanh2 A
J2e

1
2

¹
1B . (61)

Integrating equation (61) yields

c(¹
1
)"u

r
¹
1
!

b
2
J2e

1
a
1

tanh A
J2e

1
2

¹
1B#c

0
, (62)

where u
r
"pN

2
#b

1
I2#e

1
b
2
/a

1
.

At I"I
r
, there is u

r
,0. Therefore, the phase shift may be expressed as

Dc"C!
2b

2
J2e

1
a
1

D
I/Ir

"!

2b
2

a
1

J2[kN 2!pN
1
(1!pN

1
)!a

2
I2
r
]. (63)



Figure 3. The bifurcation set of system (45): (1) saddle point, (2) stable limit cycle, (3) heteroclinic loop, (4)
heteroclinic orbit, (5) unstable limit cycle, (6) heteroclinic loop, and (7) heteroclinic orbit.
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5.2. GLOBAL ANALYSIS OF PERTURBED SYSTEM

In this section, we analyze the dynamics of the perturbed system and the e!ect of small
perturbations on M. Based on the analysis in references [4, 19, 20], we know that M along
with its stable and unstable manifolds are invariant under small, su$ciently di!erentiable
perturbations. It is noticed q

$
(I ) may persist under small perturbations, in particular,

MPMe . So we obtain

M"Me"M(u, I, c) Du"q
$

(I ), I
1
)I)I

2
, 0)c(2nN. (64)

Considering the two second equations of equations (41) yields

IQ"!kN I#fM
2
I sin 2c, cR"pN

2
#3

2
b
1
I2#b

2
u2
1
#fM

2
cos 2c. (65)

In this paper, it is known from the above analysis that the last two equations of equations
(41) are of a pair of pure imaginary eigenvalues. So the resonance can occur in system (65).
Also introduce the scale transformations

kN PekN , b
1
P3

2
b
1
, I"I

r
#Jeh, fM

2
Pe f

2
, ¹

1
P

¹
1

Je
. (66)

Substituting the above transformations into equations (65) yields

hQ "!kN I
r
#fM

2
I
r
sin 2c#Je ( fM

2
h sin 2c!kN h),

cR"!

2d
a
1

I
r
h#JeA fM

2
cos 2c!

d
a
1

h2B , (67)

with d"a
2
b
2
!a

1
b
1
. When e"0, equations (67) may become

hQ "!kN I
r
#fM

2
I
r
sin 2c, cR"!

2d
a
1

I
r
h. (68)



Figure 4. The phase portraits in the di!erent bifurcation regions.
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The unperturbed system (68) is a Hamiltonian system with Hamiltonian function

H (h, c)"!kN I
r
c!1

2
fM
2
I
r
cos 2c#

d
a
1

I
r
h2. (69)

The singular points of system (68) are

p
0
"(0, c

c
)"A0, 1

2
arcsin

kN
fM
2
B and q

0
"(0, c

2
)"A0, 1

2
n#1

2
arcsin

kN
fM
2
B . (70)

Based on the Jacobian matrix evaluated at the two singular points, it is known that the
singular point p

0
is a center and q

0
is a saddle which is connected to itself by a homoclinic



Figure 5. Dynamics on the normally hyperbolic manifold; (a) the unperturbed case, and (b) the perturbed case.
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orbit. The phase portrait of system (68) is given in Figure 5(a). Following the analysis of
Kovacic and Wiggins [4], it is known that for e su$ciently small, q

0
remains a hyperbolic

singular point, qe of saddle stability type. From equations (67), we can "nd that the leading
order term of the trace of the linearization of equations (67) is less than zero inside the
homoclinic loop. So for the small perturbations, p

0
becomes a hyperbolic sink pe . Also the

phase portrait of the perturbed system (67) is depicted in Figure 5(b).
At h"0, the estimate of basin of attraction for c

min
is obtained as

kN c
min

#1
2

fM
2
cos 2c

min
"k6 c

s
#1

2
fM
2
cos 2c

s
. (71)

Substituting c
s
of equation (70) into equation (71) yields

c
min

#

fM
2

2kN
cos 2c

min
"1

2
n#1

2
arcsin

kN
fM
2

!

JfM 2
2
!kN 2

2kN
. (72)

De"ne an annulus Ae near I"I
r
as

Ae"M(u
1
, u

2
, I, c) Du

1
"B, u

2
"0, DI!I

r
D(Jec, c3¹1N, (73)

where c is a constant, which is chosen su$ciently large so that the unperturbed homoclinic
orbit is enclosed within the annulus. We notice that the three-dimensional stable and
unstable manifolds of Ae , denoted as =s(Ae) and =u (Ae ), are the subset of =s(Me) and
=u(Me ) respectively. We will show that for the perturbed system, the saddle focus pe on
Ae has homoclinic orbit which comes out of the annulus Ae and can return to the annulus in
full four-dimensional space, and eventually may give rise to Silnikov-type homoclinic loop,
as shown in Figure 6.

5.3. HIGHER-DIMENSIONAL MELNIKOV THEORY

In order to show the existence of Silnikov-type homoclinic orbit, we need two steps to
determine it [4]. In the "rst step, by using higher-dimensional Melnikov theory, the
measure of the distance between one-dimensional unstable manifold =u (pe ) and
three-dimensional stable manifold=s(Ae) may be obtained to show that=u (pe)L=s(Ae)
when Melnikov function has a simple zero. In the second step we will determine whether or



Figure 6. Silnikov-type homoclinic orbit to saddle focus.

CHAOTIC DYNAMICS OF THIN PLATE 1029
not the orbit on=u(pe) comes back into the basin of attraction of Ae . If it does, the orbit
asymptotes to Ae as tPR. If it does not, the orbit may escape from the annulus Ae by
crossing the boundary of the annulus.

Based on the results obtained in references [4, 20], higher-dimensional Melnikov
function is given as follows:

M (k
1
, pN

2
, I

r
, fM

2
)"P

`=

~=
C

LH

Lu
2

gu2#
LH

LI
gIDd¹

1

"P
`=

~=

[!k
2
u2
2
(¹

1
)#(pN

2
I
r
#b

1
I3
r
#b

2
I
r
u2
1
(¹

1
)) (!kN I

r
#fM

2
I
r
sin 2c(T

1
))] d¹

1
, (74)

where u
1
(¹

1
), u

2
(¹

1
) and c (¹

1
) are given in equations (58) and (62) respectively. From the

above analysis, the "rst and second integrands are evaluated as follows:

P
`=

~=

!k
2
u2
2
(¹

1
) d¹

1
"!

2J2e3@2
1

k
2

3a
1

, (75)

and

P
`=

~=

[!kN I
r
(pN

2
I
r
#b

1
I3
r
#b

2
I
r
u2
1
(¹

1
)) d¹

1
"!kN I2

r
Dc. (76)

The third integral can be rewritten as

M
1
(k

1
, pN

2
, I

r
, fM

2
)"fM

2
I2
r P

`=

~=

sin 2c (¹
1
) (pN

2
#b

1
I2
r
#b

2
u2
1
(¹

1
)) d¹

1

"

e
1
b
2
I2
r

fM
2

2a
1

P
`=

~=

sin 2c(¹
1
) d(2c(¹

1
))

"!

e
1
b
2
I2
r

fM
2

2a
1

[cos 2c (#R)!cos 2c (!R)]. (77)
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Using Dc"c (#R)!c (!R) yields

M
1
(k

1
, pN

2
, I

r
, fM

2
)"

e
1
b
2
I2
r

fM
2

2a
1

[sin 2c(!R)sin 2Dc!cos 2c (!R) (cos 2Dc!1)]. (78)

Based on equation (70) we obtain

sin 2c(!R)"
kN
fM
2

, cos 2c (!R)"
JfM 2

2
!kN 2
fM
2

. (79)

Substituting equation (79) into equation (78), we obtain

M
1
(k

1
, pN

2
, I

r
, fM

2
)"

e
1
b
2
I2
r

2a
1

[kN sin 2Dc!JfM 2
2
!kN 2 (cos 2Dc!1)]. (80)

Therefore, the Melnikov function may be expressed as

M(k
1
, pN

2
, I

r
, fM

2
)"!

J2[kN 2!pN
1
(1!pN

1
)!a

2
I2
r
]3@2kN

3a
1

!kN I2
r
Dc

#

e
1
b
2
I2
r

2a
1

[kN sin 2Dc!JfM 2
2
!kN 2(cos 2Dc!1)]. (81)

In order to determine the existence of the Silnikov-type homoclinic orbit, we "rst require
that the Melnikov function have a simple zero. Thus, we obtain the following expression:

!

J2[k6 2!p6
1
(1!p6

1
)!a

2
I2
r
]3@2kN

3a
1

!kN I2
r
Dc

#

e
1
b
2
I2
r

2a
1

[kN sin 2Dc!JfM 2
2
!kN 2 (cos 2Dc!1)]"0. (82)
Figure 7. The chaotic response of the averaged equations (28) for j"0)7 and k"0)16, the phase portrait on
plane (x

1
, x

2
).
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Next, we determine whether the orbit on=u(pe) returns to the basin of attraction of Ae . The
condition is given as

c
min

(c
c
#Dc#mn(c

s
, (83)

where m is an integer, Dc, c
c
, c

s
and c

min
are given by equations (63), (70) and (72) respectively.

It indicates that =u(pe)L=s(Ae), that is, one-dimensional unstable manifold =u(pe) is
a subset of three-dimensional stable manifold =s(Ae). When conditions (82) and (83) are
simultaneously satis"ed, it is shown that there exists the Silnikov-type chaos in system (43),
that is, system (43) may give rise to chaotic dynamics in the sense of Smale horseshoes.

6. NUMERICAL SIMULATION OF CHAOS

Due to the global perturbation method developed by Kovacic and Wiggins [4] can be
only used to analyze the autonomous systems but cannot be used to analyze the
non-autonomous systems, thus, the original equations (10) must be transformed to
autonomous averaged equations (28). From the averaged equations (28), the normal form
theory is used to simplify this system to the standard form, that is, the normal form. Then,
the global perturbation method is used to investigate the global bifurcations and chaotic
dynamics of the normal form. For the comparison with the analytical prediction, we choose
the averaged equations (28) and the original system (10) to do the numerical simulations. In
addition, it is very di$cult to construct the phase portraits or the topological structures of
higher-dimensional non-autonomous systems.

In this section, we use the numerical method to predict the chaotic motion of the
parametrically excited rectangular thin plate. A computer software called Dynamics [21]
which can perform the analysis for ordinary di!erential equations is used. Consider the
averaged equations (28). Firstly, the case for j"b/a"0)7 is numerically studied. The other
parameters are given as a

1
"10)3941, b

1
"2)6082, and a

2
"b

2
"5)9367. The chaotic

response of the averaged equations (28) with k"0)16, f
1
"488, f

2
"1169)63, p

1
"3)25
Figure 8. The chaotic response of the averaged equations (28) for j"0)7 and k"0)108, the phase portrait on
plane (x

1
, x

2
).
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and p
2
"6)55 is shown in Figure 7, which represents the phase portrait on plane (x

1
, x

2
).

The chosen initial conditions are x
10
"!3)1, x

20
"0)8, x

30
"1)011 and x

40
"1)4. The

chaotic response for k"0)108 and f
2
"1239)63 is shown in Figure 8. Then, the case for

j"0)9 is also investigated and the chaotic responses of the averaged equations (28) are
given in Figures 9 and 10, where the damped coe$cients are k"0)18 and 0)138 respectively.
The chosen parameters and initial conditions are: a

1
"6)3125, b

1
"4)1778,

a
2
"b

2
"7)3308, p

1
"3)25, p

2
"6)55, f

1
"488, f

2
"1189)63, x

10
"!3)1, x

20
"0)8,

x
30
"1)011 and x

40
"1)4.
Figure 10. The chaotic response of the averaged equations (28) for j"0)9 and k"0)138, the phase portrait on
plane (x

1
, x

2
).

Figure 9. The chaotic response of the averaged equations (28) for j"0)9 and k"0)18, the phase portrait on
plane (x

1
, x

2
).
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To show the existence of chaos in the original system (10), the numerical simulations are
also performed on the system (10). For the comparison with numerical results obtained
above, the two cases are considered. Firstly, the case for j"b/a"0)7 is numerically
investigated. The other parameters are given as a

1
"10)3941, b

1
"2)6082,

a
2
"b

2
"5)9367, u

1
"u

2
"1, X"2, and e"0)01. The chaotic responses of the original

system (10) with k"0)16, f
1
"48)8, f

2
"116)963, and k"0)108 and f

2
"123)963 are given

in Figures 11 and 12, respectively, which represent the phase portrait on plane (x
1
, x

2
). The

chosen initial conditions are x
10
"!3)1, x

20
"0)8, x

30
"1)011 and x

40
"1)4. The second
Figure 12. The chaotic response of the original system (10) for j"0)7 and k"0)108, the projection of the phase
portrait on plane (x

1
, x

2
).

Figure 11. The chaotic response of the original system (10) for j"0)7 and k"0)16, the projection of the phase
portrait on plane (x

1
, x

2
).
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case for j"0)9 is also studied and the chaotic responses of the original system (10) are given
in Figures 13 and 14, where the damped coe$cients are k"0)18 and 0)138 respectively. The
chosen parameters and initial conditions are a

1
"6)3125, b

1
"4)1778, a

2
"b

2
"7)3308,

f
1
"48)8, f

2
"118)963, u

1
"u

2
"1, X"2, e"0)01, x

10
"!3)1, x

20
"0)8, x

30
"1)011

and x
40
"1)4.

The numerical results on the averaged equations (28) and the original system (10)
illustrate that the chaotic motions in the averaged equations (28) may lead to the
amplitude-modulated chaotic oscillations in the original system (10) under the certain
Figure 14. The chaotic response of the original system (10) for j"0)9 and k"0)138, the projection of the phase
portrait on plane (x

1
, x

2
).

Figure 13. The chaotic response of the original system (10) for j"0)9 and k"0)18, the projection of the phase
portrait on plane (x

1
, x

2
).
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conditions. It is seen from the analytical prediction and the numerical simulations given
above that the analysis of the averaged equations can indeed predict the chaotic dynamics
of the original system qualitatively and quantitatively.

7. CONCLUSIONS

The local and global bifurcations of a rectangular thin plate under parametrical
excitation are investigated by the analytical and numerical approaches when the averaged
equations have one non-semisimple double zero and a pair of pure imaginary eigenvalues. It
is found that the parametrically excited rectangular plate can undergo Hopf bifurcation,
heteroclinic bifurcations and Shilnikov-type homoclinic orbit to the saddle focus, which
means that there exists the chaotic motion in full four-dimensional system. In order to
illustrate the theoretical predictions, the numerical simulation is performed by using
Dynamics. The numerical results also show the existence of chaotic motion in the averaged
equations. It is well known the chaotic motions in the averaged equations correspond to the
amplitude modulated chaotic oscillations in the original system. Therefore, it is
demonstrated that there are the amplitude modulated chaotic motions of Silnikov type in
parametrically excited rectangular thin plate. It is found from the numerical simulation that
the chaotic responses given above are very sensitive to initial conditions.

The case studied in this paper is di!erent from that in references [3,20]. In our
investigations, theory of normal form is used to simplify the averaged equations to the
normal form. It is noted from the above analysis that based on the normal form, the analysis
of global bifurcations and the computation of Melnikov function are simpler than that in
references [3, 10, 11, 20]. It is illustrated that the global perturbation method developed by
Kovacic and Wiggins [4] may be also applied to the case for the averaged equations being
of one non-semisimple double zero and a pair of pure imaginary eigenvalues.
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